Uniqueness of the Cheeger set of a convex body
نویسندگان
چکیده
We prove that if C ⊂ R is of class C and uniformly convex, then the Cheeger set of C is unique. The Cheeger set of C is the set which minimizes, inside C, the ratio perimeter over volume.
منابع مشابه
Total Variation and Cheeger sets in Gauss space
The aim of this paper is to study the isoperimetric problem with fixed volume inside convex sets and other related geometric variational problems in the Gauss space, in both the finite and infinite dimensional case. We first study the finite dimensional case, proving the existence of a maximal Cheeger set which is convex inside any bounded convex set. We also prove the uniqueness and convexity ...
متن کاملOn the selection of maximal Cheeger sets
Given a bounded open subset Ω of Rd and two positive weight functions f and g, the Cheeger sets of Ω are the subdomains C of finite perimeter of Ω that maximize the ratio ∫ C f(x) dx / ∫ ∂∗C g(x) dH d−1. Existence of Cheeger sets is a well-known fact. Uniqueness is a more delicate issue and is not true in general (although it holds when Ω is convex and f ≡ g ≡ 1 as recently proved in [4]). Howe...
متن کاملExistence and Uniqueness Results for a Nonstandard Variational-Hemivariational Inequalities with Application
This paper aims at establishing the existence and uniqueness of solutions for a nonstandard variational-hemivariational inequality. The solutions of this inequality are discussed in a subset $K$ of a reflexive Banach space $X$. Firstly, we prove the existence of solutions in the case of bounded closed and convex subsets. Secondly, we also prove the case when $K$ is compact convex subsets. Fina...
متن کاملSome remarks on uniqueness and regularity of Cheeger sets
We show that the subsets of R with nite volume have a unique Cheeger set, up to small perturbations. We also prove that Cheeger sets are C, when the ambient set is C.
متن کاملThe convex domination subdivision number of a graph
Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...
متن کامل